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POST–EFFICIENCY ANALYSIS 

 
Abstract. This paper analyses the productive efficiency of the Lithuanian 

family farms during 2004–2009. The productive efficiency of Lithuanian family 

farms was estimated on a basis of Farm Accountancy Data Network sample by the 

means of data envelopment analysis, which did indicate that the average technical 

efficiency fluctuated around 65.8%, whereas the mean allocative efficiency 

approached 70.5%. The mean economic efficiency, therefore, was rather low, 

namely 46%. These figures imply that Lithuanian family farms should improve both 

technological and managerial practices and thus achieve higher productivity in 

order to successfully compete in the single market of the EU. The second stage 

analysis of efficiency scores—which, indeed, had not been performed for 

Lithuanian agricultural sector before—revealed some causes of inefficiency. 

Specifically, the tobit model was employed to quantify efficiency effects, whereas 

the logit model was fitted to estimate factors of increase in efficiency. Basically, 

these analyses showed that large livestock farms adopted organic farming 

practices are those most efficient. Moreover, they were more likely to exhibit an 

increase in the productive efficiency.  

Keywords: Efficiency, Family farms, Data Envelopment Analysis, Tobit, 

Logit. 
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1. INTRODUCTION 
Family farming has been reinvigorating in Lithuania since early 1990s when the 

collective farming system was deconstructed. Since then the Lithuanian farming 

system has undergone many economic, structural, and institutional reforms. Year 

2004 marks the accession to the European Union (EU) which is related to the 

Common Agricultural Policy. The Lithuanian farming system, however, is not 

fully developed yet. In terms of the utilized agricultural area, the average 

Lithuanian farm expanded from 9.2 ha up to 13.7 ha during 2003–2010, whereas 

the total utilized agricultural area increased by some 10% and the number of 

agricultural holdings decreased by 27% from 272 thousand down to less than 200 

thousand (Statistics Lithuania, 2011). Indeed, the number of the smallest farms has 

decreased and these adjustments lead to a farm structure which is similar to that of 

the European countries. There is, however, a substantial area of state-owned or 
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abandoned land which can be employed for the agricultural activities in the future. 

Therefore it is important to analyze the farming efficiency which identifies many 

factors influencing farmers’ decisions. 

As Henningsen (2009) put it, the agricultural efficiency is interrelated with 

labour intensity, farm structure, technology and investment, managerial skills, and 

profitability. The very efficiency thus can be considered as a measure of 

productivity and profitability. The farm structure impacts technology, labour 

intensity, and managerial skills given larger farms tend to accumulate respective 

resources to a higher extent. The labour intensity and labour opportunity costs are 

reciprocally related to the investments into advanced technologies. Management 

skills also influence both labour intensity and investments into technology. The 

aforementioned factors affect the profitability, whereas the profitability, in turn, 

determines farmers’ decisions on staying in the sector or distributing their working 

time across various economic sectors. The productive efficiency, therefore, needs 

to be measured and analyzed in terms of multiple interrelated variables and 

dimensions. 

Productive efficiency of agricultural sector is extensively analyzed across 

the Central and East European states where agriculture is relatively important 

economic activity if compared to the western states. Usually the two branches of 

methods are employed for efficiency analyses, namely non–parametric methods 

(data envelopment analysis, free disposable hull) and parametric methods 

(stochastic frontier analysis). These methods can be employed for inter– as well as 

intra–state comparisons (Hoang and Alauddin, 2012; Ferjani, 2011; Jin et al., 2010; 

Bojnec and Latruffe, 2011; Aldea, Ciobanu, 2011; Matei, Spircu, 2012). Lithuanian 

agricultural sector, though, received less attention in the latter scientific area. 

Moreover, those few examples employed non-parametric methods, whereas 

parametric methods (e. g. stochastic frontier analysis) remain underused.  

Although the Lithuanian agricultural sector was analyzed by the means of 

the non-parametric methods by, for instance, Douarin and Latruffe (2011) and 

Rimkuvienė et al. (2010), there are still some issues to be tackled. First, all of the 

previous studies, with exception of Douarin and Latruffe (2011), analyzed the 

aggregated FADN data rather than micro data. Therefore the aforementioned 

studies provided fewer opportunities to fathom the underlying trends in both 

efficiency patterns and farmers’ decision-making. Second, Rimkuvienė et al. 

(2010) analyzed the Lithuanian agricultural sector in terms of performance of the 

agro sectors of the European Union Member States. Third, the previous studies 

estimated technical and scale efficiency scores, albeit they did not analyzed cost 

and allocative efficiency. Our study, therefore, aims at analyzing the micro data by 

the means of data envelopment analysis (DEA). As a result technical, scale, 

economic, and allocative efficiency is estimated and subsequently employed in the 

second stage analysis.  

This study aims at analyzing the patterns of efficiency across Lithuanian 

family farms and thus identifying managerial implications for agricultural policy–

making. Indeed, the analysis of productive efficiency can be a seminal part of 

sustainability management model for the whole agricultural sector in Lithuania 

ensuring viability of agricultural entities. 
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The paper is organized as follows. Section 2 presents the main measures of 

efficiency, whereas Section 3 discusses the non-parametric implementation of these 

measures by the means of DEA. The following Section 4 describes the data used in 

the research. Section 5 brings the results of the DEA. Finally, Section 6 is 

dedicated for the post-efficiency analysis. 

 

2. DEFINITIONS AND MEASURES OF EFFICIENCY 

Instead of defining the efficiency as the ratio between outputs and inputs, we can 

describe it as a distance between the quantity of input and output, and the quantity 

of input and output that defines a frontier, the best possible frontier for a firm in its 

cluster.   

The very term of efficiency was initially defined by Koopmans (1951). 

Koopmans offered the following definition of an efficient decision making unit 

(DMU): A DMU is fully efficient if and only if it is not possible to improve any 

input or output without worsening some other input or output. Due to similarity to 

the definition of Pareto efficiency, the former is called Pareto–Koopmans 

Efficiency. Such a definition enabled to distinguish efficient and inefficient DMUs, 

however it did not offer a measure to quantify the level of inefficiency specific to a 

certain DMU.  

Thus Debreu (1951) discussed the question of resource utilization and 

introduced the measure of productive efficiency, namely coefficient of resource 

utilization. Debreu’s measure is a radial measure of technical efficiency. Radial 

measures focus on the maximum feasible equiproportionate reduction in all 

variable inputs for an input-conserving orientation, or the maximum feasible 

equiproportionate expansion of all outputs for an output-augmenting orientation.  

Finally, Farrell (1957) summarized works of Debreu (1951) and Koopmans 

(1951) thus offering frontier analysis of efficiency and describing two types of 

economic efficiency, namely technical efficiency and allocative efficiency (indeed, 

a different terminology was used at that time). It is worth to note, that the seminal 

paper of Farrel (1957) was dedicated to analysis of agricultural production in the 

United States. The concept of technical efficiency is defined as the capacity and 

willingness to produce the maximum possible output from a given bundle of inputs 

and technology, whereas the allocative efficiency reflects the ability of a DMU to 

use the inputs in optimal proportions, considering respective marginal costs 

(Kalirajan 2002). However, Farrell (1957) noted that price information is rather 

hard to tackle in a proper way, thus technical efficiency became a primal measure 

of the productive efficiency. 

Besides, the two other types of efficiency can be defined, viz. scale and 

structural efficiency. Scale efficiency measures the extent to which outputs 

increase due to increase in input. Farrel (1957) and later Charnes, Cooper and 

Rhodes (1978) employed the most restrictive constant returns to scale (CRS) 

assumption. The latter assumption was relaxed by Banker, Charnes and Cooper 

(1984), who also pointed out that scale efficiency is related to variable returns to 

scale (VRS) efficiency (pure technical efficiency) and CRS technical efficiency. 

The structural efficiency is an industry level concept describing the structure and 
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performance of certain sector which is determined by performance of its firms. 

Indeed, one sector can be structurally efficient than another in case its firms are 

operating closer to the efficiency frontier. For instance, one can define hypothetic 

average values for several sector and compute efficiency scores for them thus 

assessing differences in structural efficiency across these sectors.  

In order to relate the Debreu–Farrel measures to the Koopmans definition, 

and to relate both to the structure of production technology, it is useful to introduce 

some notation and terminology. Let producers use inputs 
m

mxxxx ,...,, 21  

to produce outputs 
n

nyyyy ,...,, 21 . Production technology then can be 

defined in terms of the production set: 

yxyxT  producecan  , .     (1) 

Thus, Koopmans efficiency holds for an input-output bundle Tyx,  if, 

and only if, Tyx ','  for yxyx ,',' . 

Technology set can also be represented by input requirement and output 

correspondence sets, respectively: 

TyxxyI ,)( ,      (2) 

TyxyxO ,)( .      (3) 

The isoquants or efficient boundaries of the sections of T can be defined in 

radial terms as follows (Farrel, 1957). Every 
ny  has an input isoquant: 

1),(),()( yIxyIxxyisoI .    (4) 

Similarly, every 
mx  has an output isoquant: 

1),(),()( xOxxOyyxisoO .    (5) 

In addition, DMUs might be operating on the efficiency frontier defined by 

Eqs. 4–5, albeit still use more inputs to produce the same output if compared to 

another efficient DMU. In this case the former DMU experiences a slack in inputs. 

The following subsets of the boundaries I(y) and O(x) describe Pareto-Koopmans 

efficient firms: 

xxxxyIxyIxxyeffI ','),('),()( ,   (6) 

yyyyxOyxOyyxeffO ','),('),()( .   (7) 

Note that )()()( yIyisoIyeffI  and )()()( xOxisoOxeffO .  

There are two types of efficiency measures, namely Shepard distance 

function, and Farrel distance function. These functions yield the distance between 

an observation and the efficiency frontier. Shepard (1953) defined the following 

input distance function: 

)(,max),( yIyxyxDI .     (8) 

Here 1),( yxDI  for all )(yIx , and 1),( yxDI  for )(yisoIx . The 

Farrel input-oriented measure of efficiency can be expressed as: 
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)(,min),( yIyxyxTE I .      (9) 

Comparing Eqs. 8 and 9 we arrive at the following relation: 

),(1),( yxDyxTE II ,     (10) 

with 1),( yxTEI  for )(yIx , and 1),( yxTEI  for )(yisoIx . 

 Similarly, the following equations hold for the output-oriented measure: 

)(,min),( xOyxyxDO ,     (11) 

)(,max),( xOyxyxTEO ,    (12) 

),(1),( yxDyxTE OO ,     (13) 

where 1),( yxTEI  for )(yIx , and 1),( yxTEI  for )(yisoIx . 

 As it was already said, Farrel (1957) defined the two types of efficiency, 

which are known as technical and economic efficiency. The economic efficiency 

and its measures were described above. The economic efficiency is divided into 

cost, revenue and profit efficiency. For each of the three measures, a respective 

frontier is established. Here we focus solely on cost efficiency. However, revenue 

efficiency is a straightforward modification of the cost efficiency. 

Assume that producers face input prices 
m

mwwww ),...,,( 21  and 

seek to minimize cost. Thus, a minimum cost function—cost frontier—is defined 

as: 

1),(min),( yxDxwwyc I

T

x
.   (14) 

Then a measure of cost efficiency (CE) is defined as the ratio of the 

minimum cost to the actual cost: 

xwwycwyxCE T),(),,( .    (15) 

A measure of input-allocative efficiency AEI is obtained by employing Eqs. 

7 and 9: 

),(/),,(),,( yxTEwyxCEwyxAE II .   (16) 

Thus, cost efficiency can be expressed as a product of technical efficiency 

and cost allocative efficiency. The efficient point, 
Ex , minimizes cost and thus 

defines the cost frontier 
ET xwwyc ),( . The cost efficiency of the point 

0x  is 

then given by ratio 
00),( xwxwxwwyc TETT

 (cf. Eq. 15). The cost 

efficiency of 
0x  can be further decomposed into technical efficiency 

0000000 )( xwxwxx TT
 and allocative efficiency determined by the 

ratio )( 00 xwxw TET
.  

 

3. PRELIMINARIES FOR DATA ENVELOPMENT ANALYSIS 

The discussed efficiency frontier can be established by employing different 

computation techniques. These can be classified into parametric and non-

parametric methods.  
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The parametric frontier methods rely on econometric inference and aims at 

estimating parameters for pre-defined exact production functions. These 

parameters may refer, for instance, to the relative importance of different cost 

drivers or to parameters in the possibly random noise and efficiency distributions. 

The parametric frontier methods can be further classified into deterministic and 

stochastic ones. The two deterministic frontier models, namely Ordinary Least 

Squares (OLS) and Corrected Ordinary Least Squares (COLS), attribute the 

distance between an observation and the efficiency frontier to statistical noise or 

inefficiency, respectively. The stochastic parametric method—Stochastic Frontier 

Analysis (SFA)—explains the gap between an observation and the efficiency 

frontier in terms of both inefficiency and random errors.  

On the other side, non-parametric frontier methods do not allow statistical 

noise and thus the whole distance between the observation and production frontier 

is explained by inefficiency. In addition, the production frontier (surface) is defined 

by enveloping linearly independent points (observations) and does not require 

subjective specification. Therefore non-parametric models are easier to be 

implemented. Data Envelopment Analysis (DEA) and Free Disposable Hull (FDH) 

are the two widely renowned non-parametric models.  

Indeed, SFA and DEA are the two seminal methods for, respectively, 

parametric and non-parametric analysis. These methods are to be discussed 

throughout the remaining part of the study.  

DEA specifies the efficiency frontier with respect to the two assumptions, 

namely free disposability and convexity. The assumption of the free disposability 

means that we can dispose of unwanted inputs and outputs. First, if we can produce 

a certain quantity of outputs with a given quantity of input, then we can also 

produce the same quantity of outputs with more inputs. Second, if a given quantity 

of inputs can produce a given quantity of outputs, then the same input can also be 

used to produce less output. By combining these two assumptions we arrive at the 

free disposability of inputs and outputs. The technology related to free disposability 

assumption is called the free disposable hull. Assume there are Kk ,...,2,1  firms 

each possessing a certain input-output bundle ),( kk yx , then the free disposable 

hull is defined as 
kknm yyxxKkyxT ,:,...,2,1),( . 

 (17) 

The convexity assumption implies that any linear combination of the 

feasible production plans ),( kk yx  is also feasible. The convex technology set is 

defined in the following way: 

KkyyxxyxT kK

k

kK

k

kkK

k

kk ,...,2,1,0,1,,),(
111

.

 (18) 

By combining assumptions of the free disposability and convexity (cf. Eqs. 

17 and 18) the following technology set is obtained: 
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KkyyxxyxT kK

k

kK

k

kkK

k

kk ,...,2,1,0,1,,),(
111

.

 (19) 

The latter technology set includes all points that can be considered as 

feasible ones under assumption of either convexity or free disposability. DEA 

method analyses efficiency in terms of suchlike technology set. DEA is a 

nonparametric method of measuring the efficiency of a decision–making unit 

(DMU) such as a firm or a public–sector agency. 

The modern version of DEA originated in studies of A. Charnes, W. W. Cooper 

and E. Rhodes (Charnes et al., 1978, 1981). Hence, these DEA models are called 

CCR models. Initially, the fractional form of DEA was offered. However, this 

model was transformed into input– and output–oriented multiplier models, which 

could be solved by means of the linear programming (LP). In addition, the dual 

CCR model (i. e. envelopment program) can be described for each of the primal 

programs (Hajiagha et al., 2013).  

Unlike many traditional analysis tools, DEA does not require to gather 

information about prices of materials or produced goods, thus making it suitable 

for evaluating both private– and public–sector efficiency. Suppose that there are 

Ktk ,...,,...,2,1  DMUs, each producing nj ,...,2,1  outputs from mi ,...,2,1  

inputs. Hence, the t–th DMU exhibits input–oriented technical efficiency t , 

whereas output–oriented technical efficiency is a reciprocal number and tt /1 . 

The input–oriented technical efficiency t  may be obtained by solving the 

following multiplier DEA program: 

 
,

min
t k

t  

s. t.  

;,...,2,1,0

;,...,2,1,

;,...,2,1,

1

1

Kk

njyy

mixx

k

t

j

K

k

k

jk

t

it

K

k

k

ik

 

t  unrestricted. 

(20) 

In Eq. 20, coefficients k  are weights of peer DMUs. Noteworthy, this model 

presumes existing constant returns to scale (CRS), which is rather arbitrary 

condition. CRS indicates that the manufacturer is able to scale the inputs and 

outputs linearly without increasing or decreasing efficiency.  
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Whereas the CRS constraint was considered over–restrictive, the BCC (Banker, 

Charnes, and Cooper) model was introduced (Banker et al. 1984). The CRS 

presumption was overridden by introducing a convexity constraint 1
1

K

k k  , 

which enabled to tackle the variable returns to scale (VRS). The BBC model, 

hence, can be written by supplementing Eq. 20 with a convexity constraint 

1
1

K

k k . 

The best achievable input can therefore be calculated by multiplying actual 

input by technical efficiency of certain DMU. On the other hand, the best 

achievable output is obtained by dividing the actual output by the same technical 

efficiency kk /1 , where t  is obtained from Eq. 20.  

In addition, it is possible to ascertain whether a DMU operates under increasing 

returns to scale (IRS), CRS, or decreasing returns to scale (DRS). CCR measures 

gross technical efficiency (TE) and hence resembles both TE and scale efficiency 

(SE); whereas BCC represents pure TE. As a result, pure SE can be obtained by 

dividing CCR TE by BCC TE. Noteworthy, technical efficiency describes the 

efficiency in converting inputs to outputs, while scale efficiency recognizes that 

economy of scale cannot be attained at all scales of production. 

The cost efficiency is obtained by the virtue of the following linear cost 

minimization model: 

 

 

m

i

i

t

i
x

xwwyc
ik 1

,
),(min  

s. t.  

njyy

mixx

t

j

K

k

k

jk

i

K

k

k

ik

,...,2,1,

,...,2,1,

1

1

,

 

(21) 

where 
t

iw
 are the input prices for the t–th DMU. Indeed, this model yields the 

minimum cost which is the input for Eq. 15.
 

 

4. DATA USED 

The technical and scale efficiency was assessed in terms of the input and output 

indicators commonly employed for agricultural productivity analyses (Bojnec, 

Latruffe 2008, 2011; Douarin, Latruffe 2011). More specifically, the utilized 

agricultural area (UAA) in hectares was chosen as land input variable, annual work 

units (AWU) – as labour input variable, intermediate consumption in Litas, and 
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total assets in Litas as a capital factor. On the other hand, the three output 

indicators represent crop, livestock, and other outputs in Litas, respectively. 

Indeed, the three output indicators enable to tackle the heterogeneity of production 

technology across different farms.  

The cost efficiency was estimated by defining respective prices for each of 

the four inputs described earlier. The land price was obtained from the Eurostat and 

assumed to be uniform for all farms during the same period. The labour price is 

average salary in agricultural sector from Statistics Lithuania. The price of capital 

is depreciation plus interests per one Litas of assets. Meanwhile, the intermediate 

consumption is directly considered as a part of total costs. 

The data for 200 farms selected from the FADN sample cover the period of 

2004–2009. Thus a balanced panel of 1200 observations is employed for analysis. 

The analyzed sample covers relatively large farms (mean UAA – 244 ha). As for 

labour force, the average was 3.6 AWU.  

In order to quantify the factors influencing the agricultural productivity, we 

employed the following indicators for the second–stage analysis. Total output was 

used to identify relationship between farm size and efficiency. Soil index was used 

to check whether it significantly influences productivity. Farmer’s age was used to 

test the linkage between demographic processes and efficiency. The dummy 

variable for organic farming was introduced to explore the performance of the 

organic farms. The share of crop output in the total output was used to ascertain 

whether either the crop or livestock farming is more efficient in Lithuania. The 

ratio of production subsidies to the total output was employed to estimate the effect 

of support payments, whereas the ratio of subsidies for equipment to the total 

output was defined to identify the impact of capital investments. 

 

5. ESTIMATES OF THE PRODUCTIVE EFFICIENCY 

The input–oriented VRS DEA model (Eq. 20) was employed to analyze the FADN 

data which were arranged into the cross–section table. The cost efficiency 

estimates were obtained by employing Eq. 21. Finally, the allocative efficiency 

scores were computed residually. The summary of efficiency scores is presented in 

Table 1. The latter table describes the mean values for the whole period of 2004–

2009. 

 Considering the VRS technology, the mean technical efficiency fluctuated 

around 65.8%, which virtually means that average farm should reduce its inputs by 

some 35% and sustain the same output level to achieve the efficiency frontier 

(these numbers do also include the scale effect). The mean value of allocative 

efficiency was equal to 70.5% and indicated that the cost productivity can be 

increased by 29.5% due to changes in input–mix. Considering these types of 

efficiency, the mean economic efficiency—or, alternatively, cost efficiency—of 

46% was observed for the Lithuanian family farms. Therefore, these farms should 

be able to produce the same amount of output given the input vector is scaled down 

by some 54%. Suchlike shifts, however, might not be feasible for every farm given 

they are specific with certain heterogeneity across farming types. Table 1 also 
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suggests that the highest variation was observed for the economic efficiency 

estimates where coefficient of variation was 7.2% for VRS technology. 

The intensity variables (peer weights) involved in Eq. 20 defines the shape 

of the production frontier. These variables, therefore, enable to assess whether the 

DMU is operating in the range of increasing, constant, or decreasing returns to 

scale. In case the DMU is operating in the range of DRS (IRS) returns to scale, it is 

said to be operating at the supra-optimal (sub-optimal) scale. 

 

Table 1. Descriptive statistics of input–oriented technical (TE), scale (SE), allocative 

(AE), and cost (CE) efficiency scores under CRS and VRS assumptions 

 

TE 
SE 

AE CE 

VRS CRS VRS CRS VRS CRS 

Arithmetic Mean 0.658 0.535 0.834 0.705 0.747 0.460 0.401 

Median 0.628 0.520 0.925 0.728 0.758 0.436 0.376 

Standard Deviation 0.204 0.193 0.205 0.167 0.118 0.182 0.166 

Sample Variance 0.042 0.037 0.042 0.028 0.014 0.033 0.027 

Coefficient of variation 0.063 0.070 0.051 0.040 0.019 0.072 0.068 

Minimum 0.154 0.070 0.093 0.105 0.293 0.099 0.037 

 

 Grosskopf (1986) offered a methodology to determine the range of scale 

returns the DMU operates in. for this purpose one needs to estimate efficiency 

scores under non-increasing returns to scale (NIRS). The said estimates can be 

obtained by supplementing Eq. 20 with the following convexity constraint: 

1
1

K

k k . For the input-oriented DEA, the following rules hold: If 
CRS VRS

, then the DMU operates under CRS (i. e. at the optimal scale). If 
CRS VR NI SS R

, the DMU operates under DRS. If 
CRS VR NI SS R

, the 

DMU operates under IRS. 

 Fig. 1 presents the dynamics of farm structure in terms of returns to scale. 

As one can note the share of farms experiencing increasing returns to scale 

fluctuated in between the minimum value of 81% in 2008 and the maximum value 

of 95% in 2006. Hence, the largest share of the observed farms was operating at a 

sub–optimal scale and could increase its efficiency by increasing the operation 

scale. Meanwhile the share of farms operating at the optimal scale was close to nil 

and oscillated in between 0.5% and 8%. 
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Figure 1. The share of farms experiencing decreasing (DRS), constant (CRS), 

and increasing (IRS) returns to scale, 2004–2009. 

 

 The dynamics of different types of efficiency throughout 2004–2009 is 

presented in Table 2. As one can note, there were two major shocks in productive 

efficiency: the first one occurred in 2006, whereas the second one – in 2009. 

Obviously the former is related to worsened climatic conditions, for the mean grain 

yield dropped from 28.9 t/ha in 2005 down to 18.8 t/ha in 2006 (Statistics 

Lithuania, 2011). The second shock is related to some turmoil in the agricultural 

markets.  

 Considering the variation of different types of efficiency one can conclude 

that the cost efficiency (CE) was the most time–variant, whereas the allocative 

efficiency (AE) – the most time–invariant. Indeed, the coefficients of variation 

presented in Table 1 are 4% for AE and 7.2% for CE under VRS. Therefore, the 

shifts in economic efficiency can be attributed to shifts in technical and scale 

efficiency to a higher extent. This finding indicates that farmers tend to adjust the 

input–mix for their farms at a reasonable rate given the changes in prices of the 

production factors.  
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Table 2. Dynamics of the Lithuanian family farm efficiency, 2004–2009. 

 

TE 
SE 

AE CE 

VRS CRS VRS CRS VRS CRS 

Crop farming 

2004 0.69 0.52 0.79 0.66 0.77 0.46 0.40 

2005 0.61 0.47 0.80 0.64 0.73 0.39 0.34 

2006 0.53 0.38 0.76 0.57 0.71 0.31 0.27 

2007 0.69 0.63 0.91 0.72 0.75 0.50 0.47 

2008 0.68 0.62 0.91 0.72 0.75 0.49 0.46 

2009 0.57 0.46 0.84 0.65 0.75 0.37 0.34 

Average 0.63 0.51 0.84 0.67 0.75 0.42 0.38 

Livestock farming 

2004 0.74 0.67 0.91 0.85 0.83 0.63 0.56 

2005 0.84 0.75 0.89 0.83 0.83 0.70 0.62 

2006 0.77 0.67 0.87 0.79 0.78 0.60 0.52 

2007 0.87 0.81 0.93 0.82 0.80 0.72 0.65 

2008 0.85 0.80 0.94 0.81 0.79 0.69 0.63 

2009 0.70 0.63 0.89 0.81 0.83 0.57 0.52 

Average 0.80 0.72 0.90 0.82 0.81 0.65 0.58 

Mixed farming 

2004 0.78 0.50 0.67 0.78 0.75 0.61 0.38 

2005 0.71 0.53 0.77 0.73 0.70 0.52 0.37 

2006 0.66 0.44 0.71 0.70 0.66 0.46 0.29 

2007 0.72 0.59 0.82 0.78 0.75 0.56 0.44 

2008 0.72 0.56 0.79 0.74 0.69 0.54 0.39 

2009 0.61 0.44 0.75 0.74 0.72 0.45 0.32 

Average 0.70 0.51 0.75 0.74 0.71 0.52 0.36 

 

Note: the reported estimates are the input–oriented technical (TE), scale (SE), 

allocative (AE), and cost (CE) efficiency scores under CRS and VRS assumptions 

 

 Although the discussed descriptives of the efficiency scores provide some 

insights, the further analysis is needed to fathom the processes affecting productive 

efficiency. The underlying causes and sources of inefficiency thus are further 

analyzed by the means of tobit and logit models. 

 

6.  EXPLAINING INEFFICIENCY: TOBIT AND LOGIT MODELS 

This section explores the main determinants of inefficiency and quantifies their 

impact on efficiency scores or dynamics thereof. We have defined the two main 
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foci for our post–efficiency analysis, namely (i) tobit regression for particular 

factors of efficiency and (ii) logit regression for factors influencing longitudinal 

changes in efficiency. 

 The following factors were chosen as regressors. The logged output 

(lnOutput) identified the scale of operation and was considered a proxy for farm 

size. Indeed, the question of the optimal farm size has always been a salient issue 

for policy makers and scientists. The soil quality index (Soil) was included in the 

models to test the relationship between the environmental conditions and 

efficiency. The ratio of crop output to the total output (CropShare) captures the 

possible difference in farming efficiency across crop and livestock farms. 

Similarly, the dummy variable for organic farms (Organic) was used to quantify 

the difference between organic and conventional farming. It is due to Offermann 

(2003) that Lithuanian organic farms exhibit 60–80% lower crop yields depending 

on crop species if compared to same values for conventional farming. The 

demographic variable, namely age of farmer (Age) was introduced to ascertain 

whether young farmers–oriented measures can influence the structural efficiency. 

Finally, the effect of production and equipment subsidies on efficiency was 

estimated by considering ratios of production subsidies to output (SubsShare) and 

equipment subsidies to output (ESubsShare), respectively. 

 

6. 1. Tobit model 

 

Given the efficiency scores are bounded to the interval [0, 1], one needs to use the 

tobit model for the second stage analysis (Samarajeewa et al., 2012). An implicit 

assumption of the tobit approach is that an unobservable latent variable E* 

underlies the observed sample (Hoff, Vestergaard, 2003). A linear model describes 

the relationship between E* and explanatory variables xi: 

kkki kiik uxuxE* , where uk is the error term. Due to censoring of the 

dependent variable (viz. efficiency score) one observes the bounded variable E 

which gets the following values: 

kk

kkkk

kk

k

uxbb

buxaux

auxa

E

,

,

,

,     (22) 

where a and b are the lower and upper bounds of the censored variable, 

respectively. Maximum likelihood function is therefore defined to fit the model for 

the sample data; see Hoff and Vestergaard (2003) for further details.  

As for DEA efficiency scores, we can always bound them to the interval 

[0, 1]. Indeed usually neither of the DMUs exhibit zero–valued efficiency. The 

lower bound a thus can be dropped from Eq. 22.  

Given the abovementioned peculiarities of the tobit model, the marginal 

effect of a single explanatory variable xi is a function of the whole vector of 

coefficients β, explanatory variables themselves, variance of the error term σ, and 

bounds a and b: 
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where Φ is the standard normal density function. 

The three tobit models were specified for cost (economic), allocative, and 

technical efficiency with previously defined factors as regressors. Tables 3 and 4 

present the fitted tobit model.  

As one can note, the autoregressive terms were included in the three tobit 

models (Table 3) to increase their robustness. The backward procedure was carried 

out in terms of heteroscedasticity and autocorrelation consistent (HAC) z values. 

Therefore, Tables 3 and 4 present the significant factors of efficiency. Furthermore, 

Eq. 23 was employed to estimate marginal effects (the results are available upon 

request). 

 

Table 3. Coefficients of the tobit regression describing the impact of efficiency  

   factors 

 

CEt AEt TEt 

 Estimate z value Estimate z value Estimate z value 

(Intercept) -0.07 -1.19 

 

-0.18 -3.61 *** 0.33 5.46 *** 

CEt–1 0.67 16.4 *** 

      CEt–2 0.10 3.03 ** 

      AEt–1  

  

0.61 17.44 *** 

   AEt–2  

  

0.20 5.99 *** 

   TEt–1 

      

0.55 11.96 *** 

TEt–2 

      

0.14 3.19 ** 

lnOutputt 0.23 14.7 *** 0.11 10.3 *** 

   lnOutputt–1 -0.21 -12.1 *** -0.089 -7.72 *** 

   Soilt -0.002 -2.46 * -0.001 -2.42 * -0.002 -2.35 * 

Aget 0.001 3.13 ** 0.001 2.72 ** 

   Organict 0.047 1.65 . 

   

0.082 2.40 * 

CropSharet -0.048 -2.65 ** 

      SubsSharet 

      

-0.11 -2.95 ** 

SubsSharet–1 -0.056 -2.88 ** 

      Log(scale) -2.33 -41 *** -2.28 -61.4 *** -1.73 -49.7 *** 

Notes: (i) CE, AE, and TE stand for cost, allocative, and technical efficiency, 

respectively; (ii) z values are heteroscedasticity and autocorrelation consistent 

(HAC) ones; (iii) significance codes for respective p values: '***' – 0.001; '**' – 

0.01; '*' – 0.05; '.' – 0.1. 

 

The tobit regression (cf. Table 3) suggests that both cost and allocative 

efficiency is positively impacted by the scale of operation (i. e. the amount of 

output), whereas technical efficiency has no significant relation to the latter 



 

 

Productive Efficiency of the Lithuanian Family Farms (2004–2009): A Non–

parametric Inference with Post–efficiency Analysis 

______________________________________________________________ 

 

variable. Therefore it can be concluded that the larger farms are more likely to 

make more efficient decisions regarding input–mix. Indeed bigger quantities 

involved in supply and production chain management in larger farms provide more 

flexibility for large farms. This is especially the case in rather small market of 

Lithuania. Although some other studies reported efficiency to follow U-shaped 

curve across farm size groups (Latruffe et al. 2004), our findings might diverge 

from the forms, given we analyze sample particularly covering large farms. Thus 

only the right tail of the efficiency curve is what we focus at. 

The soil index had a negative impact on the three types of efficiency, 

namely cost, allocative, and technical efficiency. Furthermore, these effects are for 

the whole range of the values of the latter indicator. Soil quality, hence, affects 

both technology and input management. This finding is likely to be an outcome of 

poor estimation methodology for this variable and farming practices related to 

areas specific with higher soil quality. Indeed, farms located in fertile areas tend to 

exploit extensive agriculture rather than intensive one and thus opt for less 

innovative technologies. Further research, however should be conducted to identify 

the exact factors of the negative link between soil quality index and efficiency. 

Farmer’s age had a positive effect on allocative and economic efficiency, 

albeit this effect was negative for the youngest farmers. Thus farmer’s age matters 

to a higher extent for younger farmers, whereas its impact decreases later on. 

Furthermore, farmer’s age is likely to be related to economic rather than technical 

side of farming.  

Organic farming appeared to be more efficient if compared to conventional 

farming. To be specific, an average organic farm exhibited cost efficiency score 

which was greater by a margin of 4.7%, whereas technical efficiency increased by 

some 8.2%. Therefore the results support Tzouvelekas et al. (2001) who argued 

that organic farming regulations may encourage a more reasonable application of 

fertilizers etc., which, in turn, determines respective technological improvements. 

In addition, organic farms produce more expensive production. 

Due to the negative coefficient for crop output share in the total output, 

crop farming can be considered less efficient if compared to animal farming. 

Indeed, increase in crop share of 1 pp causes decline in efficiency of 4.8% (Table 

3), whereas the marginal effect at the maximum crop share diminishes to 2.5%. 

This finding is consistent with study by Latruffe et al. (2004) who discovered 

similar pattern for Polish farms. 

The tobit model suggests that production subsidies had a negative 

simultaneous effect on technical efficiency, i. e. increase of subsidies to output 

ratio by 1 pp. lead to an average decrease in efficiency equal to 10%. Meanwhile, 

the lagged effect of production subsides on cost efficiency was also observed. Thus 

production subsidies affected technical efficiency rather than allocative efficiency. 

As for equipment subsidies, they apparently had no significant effect on level of 

productive efficiency. 

The discussed factors determined the level of cost, allocative, and technical 

efficiency. The following sub–section discusses the impact of those factors on 

changes in efficiency. 
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6. 2. Logit model 

 

The logit model is employed to estimate the following regression: 

ki kiik uxy 0

* ,     (24) 

where *

ky  is a latent variable (Maddala 2001). The observed dummy variable, ky , 

gets the binary values: 
*1, 0

0,

k
k

y
y

otherwise
.     (25) 

 By noting ( 1)
k k

P Prob y  and assuming that ku  is symmetrically 

distributed, we have  

0k i kii
P F x ,     (26) 

where F is certain function chosen with respect to assumed distribution of the error 

term. In case of the logistic cumulative distribution we have 

(
(

)
)

1 (

)k
k

k

exp Z
F Z

exp Z
,     (27) 

and thus 

( )
ln

1 ( )

k
k

k

F Z
Z

F Z
.     (28) 

 As for the logit model, the following equation holds: 

0ln
1

k
i kii

k

P
x

P
,     (29) 

where left-hand side of the equation is called the log-odds ratio and means the ratio 

between probabilities to observe 1ky  and 0ky .  

 The changes in efficiency scores were explored by the means of logit 

regression. Therefore we defined 1ky  in case a certain farm experienced 

increase in efficiency and 0ky  otherwise. The same factors as for tobit 

regression were employed. The backward procedure was carried out with respect to 

HAC z values. Table 4 presents the final results. 
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Table 4. Coefficients of the logit regression describing shifts in efficiency  

  scores with respect to certain determinants of efficiency. 

 

Estimate z value Sig. 

 CEt 

(Intercept) -2.093 -1.455 

 lnOutputt 0.353 3.773 *** 

Soilt -0.042 -4.359 *** 

CropSharet      

Organict 2.105 4.112 *** 

SubsSharet -3.051 -3.033 ** 

ESubsSharet -2.008 -3.917 *** 

 AEt 

(Intercept) -3.879 -5.894 *** 

lnOutputt 0.379 6.376 *** 

Soilt -0.032 -3.179 ** 

CropSharet 0.469 2.208 * 

Organict    

SubsSharet    

ESubsSharet    

 TEt 

(Intercept) -4.521 -3.417 *** 

lnOutputt 0.468 5.279 *** 

Soilt -0.033 -3.397 *** 

CropSharet      

Organict 1.429 3.476 *** 

SubsSharet -1.547 -2.033 * 

ESubsSharet -1.298 -2.787 ** 

Notes: 

(i) CE, AE, and TE stand for cost, allocative, and technical efficiency, 

respectively; 

(ii) z values are heteroscedasticity and autocorrelation consistent (HAC) 

ones; 

(iii) significance codes for respective p values: '***' – 0.001; '**' – 0.01; '*' 

– 0.05; '.' – 0.1. 
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 As Table 4 suggests, larger farms were more likely to experience increase 

in efficiency. Specifically, the increase in the total output of 1% caused increase of 

the odd ratio ranging between 1.4 for cost efficiency and 1.6 for technical 

efficiency. These numbers subsequently are translated into ratio between 

probabilities of events 1ky  (i. e. increase in efficiency) and 0ky , 

respectively. 

 The soil quality index exhibited a negative relation to increase in 

economic, allocative, and technical efficiency. These relationships can be 

explained by insufficient pressure for farmers who have their farms located in 

fertile areas to adopt innovative managerial practices.  

 Crop farming is more likely to achieve positive shift in allocative 

efficiency (effect on odd ratio accounts 1.6 times), though it is not the case for cost 

and technical efficiency. Indeed, crop market is rather dynamic and therefore 

farmers can adjust their decisions related to input–mix in a more dynamic way. 

 The fitted logit model imposes that farms adopted organic farming increase 

their odd ratio for achieving higher cost efficiency at a margin of 8.2, whereas 

gains in technical efficiency are also to be positively affected by the same decision. 

 Both production and equipment subsidies are likely to cause decrease in 

cost and technical efficiency, albeit they do not significantly affect allocative 

efficiency. These phenomena might be linked to excessive purchases of long-term 

assets. On the other hand, equipment subsidies tend to distort the input market and 

thus inflate prices of the traded inputs, viz. machinery, buildings. Furthermore, 

farms receiving higher production subsidies might be located in less favoured 

areas, where they are subject to lower productivity due to agro-climatic conditions. 

 As one can note, farmer’s age had no significant impact on probability to 

experience efficiency increase. To conclude, large livestock farms adopted organic 

farming practices are those most likely to exhibit an increase in productive 

efficiency. 

 

7. CONCLUSIONS 

 

The productive efficiency of Lithuanian family farms was estimated on a basis of 

FADN data sample by the means of DEA, which did indicate that the mean 

technical efficiency fluctuated around 65.8%, whereas the mean allocative 

efficiency approached 70.5%. The mean economic efficiency, therefore, was rather 

low, namely 46%. These figures imply that Lithuanian family farms should 

improve both technological and managerial practices and thus achieve higher 

productivity in order to successfully compete in the single market of the EU. 

 The second stage analysis of efficiency scores—which, indeed, had not 

been performed for Lithuanian agricultural sector before—revealed some causes of 

inefficiency. Specifically, the tobit model was employed to quantify efficiency 

effects, whereas the logit model was fitted to estimate factors of increase in 

efficiency. Basically, these analyses showed that large livestock farms adopted 

organic farming practices are those most efficient. Moreover, they were to exhibit 

an increase in productive efficiency. 



 

 

Productive Efficiency of the Lithuanian Family Farms (2004–2009): A Non–

parametric Inference with Post–efficiency Analysis 

______________________________________________________________ 

 

 Indeed, crop farming provides intermediate goods for animal farming and 

thus the latter activity generates higher value added and, thus, is specific with 

higher efficiency. The new Rural Development Programme for Lithuania 2014–

2020 should therefore pay more attention to meat breeding which can further 

improve attractability of animal farming as well as efficiency of suchlike activities. 

Furthermore, efficiency indicators should be included in progress reports and 

constitute a part of monitoring system.  

 It should be noted that this analysis was based on data from large farms 

(mean UAA was over 240 ha). Hence, there is a need for further studies on a wider 

range of family farms. Furthermore, farming efficiency is to be estimated by the 

means of parametric methods, namely stochastic frontier analysis, which allow 

more flexibility in tackling heterogeneity related to different farming types. 
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