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The paper aimed at analysing the patterns of efficiency of the Lithuanian family farms with 

respect to the uncertain data. The latter aim was achieved by the virtue of the probabilistic produc-

tion functions. The sensitivity of the efficiency scores estimated for the Lithuanian family farms 

was analysed by manipulating the numbers of randomly drawn benchmark observations estimations 

and thus constructing respective order-m frontiers. The livestock farms appeared to be most effi-

cient, or even super-efficient, independently of the model orientation or the order of the frontier. 

The crop farms exhibited the lowest mean efficiency as well as the widest distribution of the effi-

ciency scores. The mixed farming was more related to the livestock farming in case of the input–

oriented framework and to the crop farming in the output-oriented one in terms of the mean effi-

ciency scores. Thus, the mixed farms were located inside the production frontier (surface) in a ra-

ther compact way. 
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Introduction 

 

The measurement of the efficiency of agricultural sector is an important issue 

for scientific studies due to various circumstances. First, the agricultural sector is re-

lated to voluminous public support. Second, a significant share of the rural population 

is employed in the agricultural sector. This is particularly the case in Central and 

Eastern European countries, where agricultural sectors are even more important for 

the local economies. The measures of efficiency enable to describe the state of agri-

cultural sector as well as identify the means for improvement (Mendes, 2013). 

The analyses of efficiency and productivity usually rest on the estimation of 

the production frontier. The production frontier can be estimated via either the para-

metric or non-parametric methods or combinations thereof. The non-parametric tech-

niques are appealing ones due to the fact that they do not need the explicit assump-

tions on the functional form of the underlying production function and still enable to 

impose certain axioms in regards to the latter function (Afriat, 1972). 

The deterministic non-parametric methods, though, feature some caveats. Giv-

en the data generating process (DGP) of the observed production set is unknown, the 

underlying production set also remains unknown. Therefore, the efficiency scores 

based on the observed data, i. e. a single realization of the underlying DGP, might be 

mailto:tomas@laei.lt


 356  

biased due to outliers. As a remedy to the latter shortcoming, the statistical inference 

could be employed to construct the random production frontiers. 

The partial frontiers (also referred to as the robust frontiers) were introduced 

by C. Cazals et al. (2002). The idea was to benchmark an observation not against all 

the observations dominating it but rather against a randomly drawn sample of these. 

This type of frontier was named the order-m frontier. The latter methodology has 

been extended by introducing the conditional measures enabling to analyse the im-

pact of the environmental variables on the efficiency scores (Daraio, 2005, 2007a, 

2007b). D. C. Wheelock and P. W. Wilson (2003) introduced the Malmquist produc-

tivity index based on the partial frontiers. L. Simar and A. Vanhems (2013) presented 

the directional distance functions in the environment of the partial frontiers. The or-

der-m frontiers have been employed in the sectors of healthcare (Pilyavsky, 2008) 

and finance (Abdelsalam, 2013) among others. 

In spite of the importance of the efficiency analysis and the shortcomings of 

the conventional efficiency measures, efficiency of the Lithuanian agricultural sec-

tor—like that of the other ones—has not been analysed by the means of the partial 

frontiers. Indeed, the Lithuanian agricultural sector has been analysed by the means 

of the bootstrapped Data Envelopment Analysis (Baleţentis, 2012). However, the lat-

ter method offers rather poor means for the analysis of sensitivity. Therefore, there is 

a need for further analyses of performance of the Lithuanian family farms and agri-

cultural sector in general. The simulation–based methodology is of particular impor-

tance in the latter context. 

This paper, therefore, aims at analysing the patterns of efficiency of the Lithu-

anian family farms with respect to the uncertain data. The latter aim was achieved by 

the virtue of the order-m frontiers. The following tasks were set: 1) to describe the 

methodology of the order-m frontiers; 2) to employ the order-m frontiers for estima-

tion of the efficiency scores for the Lithuanian family farms; 3) to perform sensitivity 

analysis of the obtained results. 

The paper is structured in the following manner: Section 1 presents the compu-

tations associated with the order-m frontiers. Section 2 describes the data used. Final-

ly, the results are presented in Section 3. 

 

1. Preliminaries for the estimation of the order–m frontiers 

 

The activity analysis (Koopmans, 1951; Debreu, 1951) defines the production 

technology by treating the sets of inputs, px  , and outputs, qy  , across the deci-

sion making units (DMUs). The technology set, T, consists of all feasible production 

plans: 

  , |  can produce p qT x y x y

  .   (1) 

Furthermore, the free disposability of inputs and outputs is assumed (Shepard, 

1970), i. e. ( , ) ( ', ')x y T x y T    for ', 'x x y y  . Note that inequalities between vec-

tors are to be read element-wise throughout the paper.  

The input- and output-oriented Farrell measures of efficiency can be defined, 

respectively, as (Farrell, 1957): 
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    , inf | ,x y x y T    , and   (2) 

    , sup | ,x y x y T    .    (3) 

The variables  0,1   and 1,   are the input– and output–oriented effi-

ciency scores, respectively. These scores indicate the degree of the proportional con-

traction (augmentation) of inputs (outputs). The efficient points feature efficiency 

scores equal to unity. The latter measures render the efficient observations 

 ( ),x y y T  , where  ( ) ,x y x y x  , for the input direction and  , ( )x y x T  , where 

 ( ) ,y x x y y  , for the output direction.  

In empirical studies, the set T and hence the efficiency scores are unknown 

(Daraio, 2005). Indeed, the quantities of interest are estimated from a random sample 

of the DMUs,   , | 1,2,...,K k kx y k K   . The non-parametric methods (Farrell, 1957; 

Charnes, 1978; Deprins, 1984) have been widely employed for efficiency analysis for 

they are devoid of the over-restrictive hypotheses on the DGP.  

In this spirit, a certain DMU,  ,k kx y , defines an associated production possi-

bility set,  ,k kx y , which, under the free disposability of inputs and outputs, can be 

given as: 

    , , | ,p q

k k k kx y x y x x y y 

    .   (4) 

The union of the individual production possibility sets (Eq. 4) results in the 

Free Disposal Hull (FDH) estimator of the underlying technology set, T: 

 

  
1

ˆ ,

, | , , 1,2,...,

K

FDH k k
k

p q

k k

T x y

x y x x y y k K










    

.  (5) 

The efficiency scores can then be obtained by plugging Eq. 5 into Eqs. 2–3. 

C. Cazals et al. (2002) and later on C. Daraio & L. Simar (2005) introduced the 

probabilistic description of the production process. The latter approach is of particu-

lar usefulness for estimation of the robust frontiers. The production process, thus, can 

be described in terms of the joint probability measure,  ,X Y  on p q

   . This joint 

probability measure is completely characterized by the knowledge of the probability 

function  ,XYH    defined as: 

   , Pr ,XYH x y X x Y y   .    (6) 

The support of  ,XYH    is T and  ,XYH x y  can be interpreted as the probability for a 

DMU operating at  ,x y  to be dominated. Note that this function is a non-standard 

one, with a cumulative distribution form for X and a survival form for Y. 

In the input orientation, it is useful to decompose the joint probability as fol-

lows: 

     

   |

, Pr | Pr

|

XY

X Y Y

H x y X x Y y Y y

F x y S y

   


,   (7) 

where the conditional probabilities are assumed to exist, i. e.   0YS y  .  
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The input-oriented efficiency score,  ,x y , for  ,x y T  is defined for 

 | 0Yy S y   as: 

       |, inf | | 0 inf | , 0X Y XYx y F x y H x y        . (8) 

In the latter setting, the conditional distribution  | |X YF y  acts as the feasible set 

of input values, X, for a DMU exhibiting the output level y. Given the free disposabil-

ity assumption, the lower boundary of this set (in a radial sense) renders the Farrell-

efficient frontier. 

A non-parametric estimator is obtained by replacing  | |X YF x y  by its empirical 

version: 

 
 

 
1

| ,

1

,
ˆ |

K

k kk
X Y K K

kk

I X x Y y
F x y

I Y y





 







,   (9) 

where  I   is the indicator function. 

It is due to C. Cazals et al. (2002) that the estimator given by Eq. 8 coincides 

with the FDH one:        | ,
ˆ ˆ ˆ, inf | , inf | | 0FDH FDH X Y Kx y x y T F x y        . The latter 

estimators, however, are the deterministic ones and therefore assume that all the ob-

servations constitute the underlying technology set, namely   Pr , 1k kx y T  . There-

fore, these estimators are sensitive to the outliers as well as the atypical observations, 

which can affect the lower boundary of  | ,
ˆ |X Y KF x y . As a remedy to the outlier prob-

lem, C. Cazals et al. (2002) suggested considering the expected value of m variables 

 
1,2, ,l l m

X
 

 randomly drawn from the conditional distribution  | ,
ˆ |X Y KF x y  (hence the 

term order-m  frontier) rather than the lower boundary of  | ,
ˆ |X Y KF x y  as the bench-

mark. Specifically, the input order-m  frontier is estimated via the following proce-

dure (Daraio, 2007b): For a given level of output, y , we consider m i.i.d. random var-

iables,  
1,2, ,l l m

X
 

, generated by the conditional p-variate distribution function, 

 | |X YF x y , and obtain the random production possibility set of order m  for DMUs 

producing more than y : 

    , ' | , ' , 1,2,...,p q

m lT y x y X x y y l m

     .  (10) 

Then, the order–m  input efficiency score is obtained as: 

    |, , |m X Y mx y E x y Y y   ,  (11) 

with       , inf | ,m mx y x y T y     and |X YE  being the expectation relative to the dis-

tribution  | |X YF y . Given the order-m  frontier might not include the observation un-

der consideration (i. e.  ,x y T ), the input Farrell efficiency scores are no longer 

bounded to the interval  0,1  and can exceed the unity. As m , however, mT T  

with    , ,m x y x y  , though only the asymptotic convergence is maintained. 

The empirical estimator of  ,m x y  is obtained by plugging in the empirical 

version of  | |X YF y : 
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    

  

    
 

, |

|
0

|ˆ ,

ˆ ˆ, , |

ˆ1 |

ˆ ˆ, 1 |
FDH

m n X Y m

m

X Y

m

FDH X Y
x y

x y E x y Y y

F ux y du

x y F ux y du


 







 

 

  





.  (12) 

Instead of computing the univariate integral in Eq. 12, one can employ the 

Monte Carlo procedure: 

1) For a given output level, y , draw a sample of size m with replacement 

among |k kx y y  and denote this sample as  , 1,2, ,l b l m
X

 
; 

2) Compute the input–oriented efficiency scores as 

  ,

1,2,..., 1,2,...,
, min max

i

b l b

m il m i p

X
x y

x


 

   
   

   

; 

3) Redo this for 1,2, ,b B  , where B  is large; 

4) Compute the estimate of the efficiency score:    ,

1

1ˆ , ,
B

b

m n m

b

x y x y
B

 


  . 

The standard FDH solution is based on the deterministic empirical frontier, 

which envelopes all the observed data points:  

 
1,2,..., | 1,2,...,

ˆ , min max
k

i

k
FDH ik K Y y i p

X
x y

x


  

  
   

  
.   (13) 

For the output orientation, the following efficiency score is computed: 

       |, sup | | 0 sup | , 0Y X XYx y S y x H x y        ,  (14) 

with the following empirical estimator of  | |Y XS y x : 

 
 

 
1

|

1

,
ˆ |

K

k kk
Y X K

kk

I X x Y y
S y x

I X x





 







.   (15) 

Indeed,          |
ˆ ˆˆ, sup | , , sup | | 0FDH FDH Y Xx y x y T x y S y x          .  

 

The output order-m  frontier is estimated via the following procedure (Daraio, 

2007b): For a given level of input, x , we consider m i.i.d. random variables, 

 
1,2, ,l l m

Y
 

, generated by the conditional q-variate distribution function, 

   | | Pr |Y XF y x Y y X x   , and obtain the random production possibility set of order 

m  for DMUs consuming less than x : 

    ', | ' , , 1,2,...,p q

m lT x x y x x y Y l m

     .  (16) 

Then, the order–m  output efficiency score is obtained as: 

    |, , |m Y X mx y E x y X x   ,  (17) 

with       , sup | ,m mx y x y T x     and |Y XE  being the expectation relative to the dis-

tribution  | |Y XF x . The resulting output Farrell efficiency scores can fall below the 

unity. 

The empirical estimator of  ,m x y  is obtained by plugging in the empirical 

version of  | |Y XS x : 
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    

  

    
 

, |

|
0

|ˆ ,

ˆ ˆ, , |

ˆ1 |

ˆ ˆ, 1 |
FDH

m n Y X m

m

Y X

m

FDH Y X
x y

x y E x y X x

S uy x du

x y S uy x du


 







 

 

  





.  (18) 

Instead of computing the empirical expectation in Eq. 18, one can employ the 

following Monte Carlo procedure: 

1) For a given input level, x , draw a sample of size m with replacement among 

|k ky x x  and denote this sample as  , 1,2, ,l b l m
Y

 
; 

2) Compute the output–oriented efficiency scores as  
1,2,..., 1,2,...,

,

, min max
j

b

m jl m j q
l b

y
x y

Y


 

    
   

    

; 

3) Redo this for 1,2, ,b B  , where B  is large; 

4) Compute the estimate of the efficiency score:    ,

1

1ˆ , ,
B

b

m n m

b

x y x y
B

 


  . 

The standard output-oriented FDH efficiency score is computed as follows:  

 
1,2,..., | 1,2,...,

ˆ , min max
k

j

FDH jk K X x j q
k

y
x y

Y


  

   
   

   
.   (19) 

The present study used 200B  . The FEAR package (Wilson, 2008) was em-

ployed to implement the discussed measures. 
 

Data used 
 

The data for 200 farms selected from the FADN sample cover the period of 

2004–2009. Thus a balanced panel of 1200 observations is employed for analysis. 

The technical efficiency was assessed in terms of the input and output indicators 

commonly employed for agricultural productivity analyses, see, for instance, a study 

by Š. Bojnec and L. Latruffe (2008). More specifically, the utilized agricultural area 

(UAA) in hectares was chosen as land input variable, annual work units (AWU) – as 

labour input variable, intermediate consumption in Litas, and total assets in Litas as a 

capital factor. The last two variables were deflated by respective real price indices 

provided by Eurostat. On the other hand, the three output indicators represent crop, 

livestock, and other outputs in Litas (Lt), respectively. The aforementioned three out-

put indicators were deflated by respective price indices and aggregated into a single 

one. The aforementioned instance of aggregation was implemented in order to ensure 

that the randomly drawn output values are reasonable ones across farms of the differ-

ent specialization. The analysed sample covers relatively large farms (mean UAA – 

244 ha). As for labour force, the average was 3.6 AWU. One can note that crop farms 

were specific with the highest variation of the variables under analysis save AWU.  

In order to identify the differences in efficiency across certain farming types, 

the farms were classified into the three groups in terms of their specialization. Specif-

ically, farms with crop output larger than 2/3 of the total output were considered as 

specialized crop farms, whereas those specific with livestock output larger than 2/3 of 

the total output were classified as specialized livestock farms. The remaining farms 

fell into a residual category called mixed farming. 
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Results 

 

Initially, the ordinary FDH was employed to measure the efficiency across the 

three farming types. Both the input and output-oriented FDH models (cf. Eqs. 13 and 

19 respectively) yielded the same results: The livestock farms achieved the highest 

level of efficiency, viz. 92%. The mixed farms came next with the efficiency scores 

of 82–86% depending on the model‘s orientation. Finally, the crop farms featured the 

lowest efficiency of 79–80%. 

In order to examine the sensitivity of the results, the order-m frontier was es-

tablished for both input- and output-oriented models. A set of different values of m 

was constructed:  25,50,100,250,400,500,600,750,1000m  . By altering the value of m 

one can compute the share of the observations lying outside the production frontier, 

whether input-oriented or output-oriented one. 

The share of observations lying outside the order-m input frontier is plotted 

against the order of the frontier, m, in Fig. 1. For the small values of m, almost all of 

the observations were left out for irrespectively of the farming type. The shares of the 

observations outside the production frontier, though, steeply diminished with m in-

creasing up to the value of 400. Note that the value of m indicates how many values 

of inputs are drawn to estimate the expected level of efficiency. For 400m  , only the 

share of the livestock farms outside the production frontier continued to decrease to a 

higher extent, whereas those associated with other farming types virtually remained 

stable. Specifically, some 35%, 60%, and 45% of the crop, livestock, and mixed 

farms respectively fell outside the production frontier at 400m  . These values are 

quite high and imply that some sort of statistical noise is present in the data. By fur-

ther increasing m up to 1000, we observed the decrease in shares of the crop, live-

stock, and mixed farm observations outside the production frontier down to 28%, 

47%, and 39% respectively. These figures resemble the proportions of the noise data 

in the whole dataset. Furthermore, the observations associated with the livestock 

farming can be considered as atypical ones in terms of the data set under analysis. 

 

 
Fig. 1. The share of observations outside the input order-m frontier 
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As for the output order-m frontiers, they rendered much lower shares of obser-

vations outside the frontier, possibly due to the univariate output values and multivar-

iate input vectors. The shares of the observations falling outside the frontier dimin-

ished as m increased up to 400, whereas higher values of m did not induce any signif-

icant decrease. Noteworthy, the shares of observations lying outside the production 

frontiers were 24%, 48%, and 10% for crop, livestock, and mixed farms respectively. 

At 1000m  , these shares decreased down to 16%, 34%, and 8%. Note that in the out-

put-oriented case the mixed farms exhibited the lowest share of observations lying 

outside the production frontier. 

 

 
Fig. 2. The share of observations outside the output order-m frontier 

 

Thus, one can consider the value of 400 as the order of the partial input and 

output production frontiers to ensure the robustness of the analysis. Indeed, frontiers 

with orders 400m   exhibit similar shares of observations outside them and the only 

effects remaining are those of the outlier observations. 

The following Figs. 3 and 4 depict the mean efficiency scores for the input- 

and output-oriented models. Note that the latter results are the Farrell measures (cf. 

Eqs. 2 and 3 for the general case; whereas Eqs. 11 and 17 correspond to the order-m 

estimates). 

The input-oriented Farrell efficiency scores below unity indicate that a certain 

farm should reduce their inputs by the respective factor. On the contrary, the order-m 

frontiers allow for efficiency scores exceeding unity and therefore indicating that cer-

tain farms are super-efficient ones. For small ms, the mean values of the input–

oriented efficiency scores exceeded unity thus indicating that most of the observa-

tions fell outside the production frontier. Anyway, the livestock farming remained the 

most efficient farming type at all levels of m (Fig. 3). The mixed farms exhibited 

slightly lower mean efficiency scores. Finally, the crop farms remained at the very 

bottom in terms of the mean efficiency scores. Note that the mean efficiency scores 

did not vary with m for the input frontier orders exceeding the value of 400. 
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The patterns of efficiency had somehow altered in regards to the output-

oriented frontiers. Fig. 4 depicts the Farrell output efficiency scores which exceed 

unity in case a farm is inefficient and approaches unity as a farm gets more efficient. 

 

 
Fig. 3. The mean input Farrell efficiencies at different values of m 

 

 
Fig. 4. The mean output Farrell efficiencies at different values of m 

 

Those farms featuring output efficiency scores below unity are considered as 

super–efficient ones. This time, the crop and mixed farms exhibited extremely similar 

values of the mean efficiency scores: For small values of m ( 100m  ) the mixed farms 

featured the lowest efficiency scores, whereas the crop farms superseded them for 

500m  . Anyway, the difference between these means remained a rather insignificant 

one. The livestock farms remained the most efficient ones for each value of m. 

Given the discussed findings we chose the order of the production frontiers as 

400m   and further analysed the distributions of the efficiency scores associated with 
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the different farming types. Therefore, Figs. 5 and 6 present the kernel densities for 

the efficiency scores. 

 

 
Fig. 5. The densities of the input-oriented Farrell efficiency scores (m=400) 

 

 
Fig. 6. The densities of the output-oriented Farrell efficiency scores (m=400) 

 

As for the input efficiency scores (Fig. 5), all the farming types featured the 

modal values close to unity. Obviously, the livestock farms were specific with the 

highest concentration of the efficiency scores equal or greater to unity. Accordingly, 

the mean efficiency score for the livestock farms was 1.01, i. e. an average farm was 

super-efficient. The corresponding values for the crop and mixed farms were 0.91 

and 0.98 respectively. The first quartiles for the crop, livestock, and mixed farms 

were 0.77, 0.95, and 0.87 respectively. Meanwhile, the third quartiles were 1.02, 

1.08, and 1.54 in that order. The latter numbers can be interpreted as the minimal fac-

tor to which top 25% efficient farms could increase their consumption of inputs given 
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their production level and still remain efficient ones. Although the most efficient 

farms were the crop farms, they constituted rather insignificant share of the whole 

sample. Note that the maximal efficiency exceeded unity. Therefore, we can even 

speak of super-efficiency at this point. 

The output efficiency scores were distributed in a similar way (Fig. 6). The 

livestock farms exhibited the most concentrated distribution. The mean values of the 

efficiency scores did not fall below unity for either farming type: 1.32 for the crop 

farms, 1.05 for the livestock farms, and 1.25 for the mixed farms. However, the first 

quartile for the livestock farms was 0.95 and thus indicated that more than 25% of the 

livestock farms were super–efficient ones. The corresponding values for the remain-

ing farming types were ones. The third quartiles were 1.46, 1.11, and 1.38 for the 

crop, livestock, and mixed farms respectively. 

 

Conclusions 

 

1. The sensitivity of the efficiency estimates for the Lithuanian family farms 

was analysed by manipulating the numbers of randomly drawn benchmark observa-

tions estimations and thus constructing respective order-m frontiers. The livestock 

farms appeared to be most efficient, or even super-efficient, independently of the 

model orientation or the order of the frontier. The crop farms exhibited the lowest 

mean efficiency as well as the widest distribution of the efficiency scores. The latter 

finding might be attributed to the stochastic nature of the crop farming. 

2. For instance, the shares of observations lying outside the input (resp. out-

put) production frontier were 35%, 60%, and 45% (resp. 24%, 48%, and 10%) for 

crop, livestock, and mixed farms respectively at 400m  . These figures imply that a 

significant share of the livestock farm observations fell outside the production fron-

tier and the latter farming type is a relatively efficient one. Furthermore, the mean in-

put efficiency scores for the crop, livestock, and mixed farms were 0.91, 1.01, and 

0.98, respectively. This implies that an average livestock farm was super–efficient 

and could have increased the consumption of inputs by 1% without any loss in effi-

ciency. The inverse mean output efficiency scores were 0.78 for the crop farms, 0.95 

for the livestock farms, and 0.8 for the mixed farms. Noteworthy, suchlike patterns of 

efficiency were observed across different values of order of the frontier. 

3. The mixed farming was more related to the livestock farming in case of the 

input-oriented framework and to the crop farming in the output-oriented one in terms 

of the mean efficiency scores. The model‘s orientation, thus, is quite important option 

revealing certain systematic variations in the context of the analysis of the agricultur-

al efficiency in Lithuania. In addition, these findings showed that the mixed farms 

were located inside the production frontier (surface) in a rather compact way. 

4. The following directions can be given for the further studies: The partial 

frontiers of order- , can be employed to analyse the farming efficiency. Both order-

m and order-  measures should be implemented alongside the Malmquist index to 

measure the changes in the total factor productivity. Finally, each of the farming 

types could be analysed independently. 
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Santrauka 

 

Straipsnyje analizuojamas Lietuvos ūkininkų ūkių veiklos efektyvumas įvertinant duomenų 

neapibrėţtumą. Minėtam tikslui pasiekti pritaikytos tikimybinės gamybos funkcijos. Gautųjų efek-

tyvumo įverčių jautrumo analizė buvo atlikta keičiant atsitiktinės atskaitos ūkių imties dydį, taip su-

formuojant atitinkamas m-osios eilės gamybos ribas. Gyvulininkystės ūkiai veikė santykinai efek-

tyviausiai, nepriklausomai nuo modelio orientacijos į išteklių taupymą ar produkcijos apimties didi-

nimą, ir atsitiktinės imties dydţio. Augalininkystės ūkiai pasiţymėjo ţemiausiais vidutiniais efekty-

vumo įverčiais ir didţiausia duomenų sklaida. Svarbu paminėti, kad pačiais didţiausiais efektyvu-

mo įverčiais pasiţymėjo atskiri augalininkystės ūkiai, taigi neefektyvumas minėtame ūkininkavimo 

tipe gana daţnai gali būti lemiamas gamtinių ar vadybinių aplinkybių. Mišrūs ūkiai efektyvumo ly-

gio atţvilgiu buvo panašesni į gyvulininkystės ūkius į išteklių taupymą orientuotame modelyje, o į 

augalininkystės ūkius – į produkcijos apimties didinimo modelyje. Taigi mišrūs ūkiai yra susikon-

centravę efektyvumo ribos viduje ir projektuojami ant skirtingų ribos (paviršiaus) plokštumų kei-

čiant modelio orientaciją. 

Raktiniai ţodţiai: efektyvumas, ūkininkų ūkiai, m-tosios eilės riba, veiklos analizė. 

JEL kodai: C140, C440, D240, Q120. 


